Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hai-Liang Zhu ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}$ *

${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang 236041, Anhui, People's
Republic of China, and ${ }^{\mathbf{b}}$ Department of
Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
Disorder in main residue
R factor $=0.055$
$w R$ factor $=0.180$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

μ-2-Methylpyrazine- μ-trifluoroacetato-silver(I)

The $1 / 1$ adduct of silver(I) trifluoroacetate and 2-methylpyrazine, $\left[\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right]_{\mathrm{n}}$, adopts a layer structure in which the Ag atom is linked to two trifluoroacetate anions and two 2-methylpyrazine heterocycles. The two independent Ag atoms exist in tetrahedral environments.

Comment

Silver(I) trifluoroacetate affords a number of adducts with N heterocycles; with some, such as chalcogenobis-3,3'-bipyridine (Kim et al., 2002) and 4-aminopyridine (Zhu et al., 2003), the trifluoroacetate unit engages in coordination, whereas in the phenanthroline complex, the anion does not participate as the silver atom is already chelated by two heterocycles (Paramonov et al., 2003). The complexes of silver trifluoroacetate now include the 2-methylpyrazine complex, (I). The heterocyclic ligand uses both N donor sites to bind to Ag atoms, as does the carboxylate anion, so that the two independent Ag atoms are coordinated by four atoms in a tetrahedral environment. The μ_{2} bridging modes of the heterocycle and anion lead to the formation of a three-dimensional network structure. For the adduct with 4 -aminopyridine, the Ag atom is coordinated by two pyridyl N atoms but the trifluoroacetate anion is only unidentate to the Ag atom (Zhu et al., 2003).

(I)

Experimental

The reagents were commercial products. Silver trifluoroacetate ($1 \mathrm{mmol}, 0.22 \mathrm{~g}$) and 2-aminopyrazine ($1 \mathrm{mmol}, 94 \mathrm{mg}$) were dissolved in dilute aqueous ammonia (10 ml); stirring the mixture briefly gave a clear solution. The solution was set aside for a day to allow the ammonia gas to escape. Large colorless crystals separated from the solution; these were collected and washed three times with water. The compound was isolated in about 80% yield.

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right]$
$M_{r}=315.01$
Monoclinic, $P 2_{1} / n$
$a=12.479(2) \AA$
$b=12.611(2) \AA$
$c=12.597(2) \AA$
$\beta=95.963(2)^{\circ}$
$V=1971.7(5) \AA^{3}$
$Z=8$
$\left[\mathrm{Ag}\left(\mathrm{CF}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{2}\right)\right]$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=12.479$ (2) A
$b=12.611$ (2) A
$c=12.597$ (2) A
$V=1971.7(5) \AA^{3}$
$Z=8$
$D_{x}=2.122 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
Cell parameters from 2633
reflections
$\theta=2.3-24.2^{\circ}$
$\mu=2.07 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.21 \times 0.15 \times 0.15 \mathrm{~mm}$

Received 1 June 2004 Accepted 4 June 2004 Online 12 June 2004

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
 Absorption correction: multi-scan (SADABS; Bruker, 2002)
 $T_{\text {min }}=0.398, T_{\text {max }}=0.732$
 10949 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{aligned}
& w=1 / {\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0899 P)^{2}\right.} \\
&\quad+2.7689 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.50 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.71 \mathrm{e}^{-3}
\end{aligned}
\end{aligned}
$$

4234 independent reflections
3041 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.041$
$\theta_{\text {max }}=27.1^{\circ}$
$h=-15 \rightarrow 13$
$k=-13 \rightarrow 16$
$l=-11 \rightarrow 15$
$w R\left(F^{2}\right)=0.180$
$S=1.07$
4234 reflections
330 parameters
H -atom parameters constrained

Figure 1
ORTEPII (Johnson, 1976) plot of of a portion of the layer structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radii. Symmetry codes as in Table 1.
structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Shanxi Normal University for the diffraction measurements, and Fuyang Normal College and the University of Malaya for the generous support of this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Winconsin.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
Kim, Y. J., Yoo, K. H., Park, K.-M., Hong, J. \& Jung, O.-S. (2002). Bull. Korean Chem. Soc. 23, 1744-1748.
Paramonov, S. E., Kuzmina, N. P. \& Troyanov, S. I. (2003). Polyhedron, 22, $837-$ 841.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhu, H.-L., Zeng, Q.-F., Xia, D.-S., Liu, X.-Y. \& Wang D.-Q. (2003). Acta Cryst. E59, m726-m728.

